Math 241 Sample Problems for Final Exam

Question 1 Let $f(x,y) = \frac{\sin(2x-y)}{y}$. Find the equation of the tangent plane to the surface f(x,y) at the point when (x,y) = (2,1).

Question 2 Let z = g(x, y) and suppose that $x(t) = t^2 + 3t + 2$ and $y(t) = e^t + \sin(3t)$. Find $\frac{dz}{dt}\Big|_{t=0}$ if $\frac{\partial g}{\partial x}\Big|_{(1,2)} = 6$, $\frac{\partial g}{\partial y}\Big|_{(1,2)} = -2$, $\frac{\partial g}{\partial x}\Big|_{(2,1)} = -3$, $\frac{\partial g}{\partial y}\Big|_{(2,1)} = 8$, $\frac{\partial g}{\partial x}\Big|_{(0,0)} = 0$, $\frac{\partial g}{\partial y}\Big|_{(0,0)} = -4$

Question 3 Let the temperature at a point (x, y) be given by $T(x, y) = \frac{xy}{(1 + x^2 + 2y^2)}$.

a) Find the direction in which the temperature rises most rapidly at (1, 2).

b) Find the directional derivative of T at the point (1,2) in the direction of the vector $\mathbf{v} = 5\mathbf{i} - \mathbf{j}$.

Question 4 Let $f(x, y) = 3x^2y + y^3 - 3x^2 - 3y^2 + 2$. a) Find the critical points of f(x, y).

b) Classify the critical points in part a) as a relative maximum, relative minimum or saddle point.

Question 5 Find the volume of the solid wedge cut from the cylinder $4x^2 + y^2 = 16$ below by the plane z = 0 and above by the plane z = y by evaluating an appropriate double integral.

Question 6 Evaluate the double integral
$$\int_0^{\sqrt{2}} \int_y^{\sqrt{4-y^2}} \frac{1}{(1+x^2+y^2)^{3/2}} dx dy$$
, by using polar coordinates.

Question 7 Express the triple integral: $\iiint_R \frac{1}{x^2 + y^2 + z^2} dy dz dx$ as an integral in spherical coordinates if R is the region bounded below by the paraboloid $2z = x^2 + y^2$, and above by the sphere $x^2 + y^2 + z^2 = 8$. This is a little tricky since you will need to use two triple integrals. Do NOT Evaluate the integrals!

Question 8 Let $\mathbf{F}(x, y) = (e^x \sin y - y)\mathbf{i} + (e^x \cos y - x - 2)\mathbf{j}$ be a vector field defined on \mathbb{R}^2 . a) Show that \mathbf{F} is a conservative vector field.

b) Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the path $\mathbf{r}(t) = (\ln(t+1)\cos(\sqrt{\pi} t))\mathbf{i} + (t^2 + \frac{1}{2}\pi)\mathbf{j}$, $0 \le t \le \frac{\sqrt{\pi}}{2}$.

Question 9 Evaluate the line integral $\int_C (x + xy^2) dx + 2(x^2y - y^2 \sin y) dy$ where C is the path oriented counterclockwise enclosing the region in the first quadrant bounded by $y = x^2$ and y = 1 and x = 0 by using Green's Theorem.

Question 10 Use the transformation $x = u^{2/3}v^{1/3}$, $y = u^{1/3}v^{2/3}$ to find $\iint_R \frac{x^2 \sin xy}{y} dA$ where R is the quadrangular region bounded by the parabolas $x^2 = \frac{1}{2}\pi y$, $x^2 = \pi y$, $y^2 = \frac{1}{2}x$, $y^2 = x$. You may assume that u, v > 0.

Question 11 Compute $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$ and $\int_C \mathbf{F} \cdot \mathbf{n} \, ds$ for the vector field $\mathbf{F}(x, y) = (x + y)\mathbf{i} - (x^2 + y^2)\mathbf{j}$ where C is the boundary of the triangle bounded by y = 0, x = 1 and y = x oriented counterclockwise.

Question 12 Lagrange multipliers?